

Rayat Shikshan Sanstha's

Mahatma Phule Mahavidyalaya, Pimpri, Pune Reaccredited with 'A' Grade by NAAC/ DST-FIST funded /An ISO 9001:2015 Certified College Affiliated to Savitribai Phule Pune University, Pune (PU/PN/ACS/053)

Department of Chemistry

B.Sc Chemistry

B.Sc.

<u>UG</u> Course outcome

Name of the	Class	Course	Course	Course outcome
department		name	code	
Department of	F.Y.B.Sc.	Physical	<u>CH 101</u>	CO 1. Describe the laws of thermodynamics
Chemistry	<u>Sem-I</u>	Chemistry		CO 2. Calculate enthalpy, bond energy, bond
				dissociation energy, resonance energy
				CO 3. Relate free energy and equilibrium
				CO 4. Compare exergonic and endergonic
				reaction
				CO 5. Differentiate strong, moderate and
				weak electrolytes
				CO 6. Analyse factors affecting degree of
				ionization
	F.Y.B.Sc.	Organic	<u>CH 102</u>	CO 1. Describe inductive effect, electromeric
		Chemistry		effect, resonance and hyperconjugation
				CO 2. Compare homolysis and heterolysis
				CO 3. Differentiate between geometrical and
				optical isomerism
				CO 4. Apply E/Z nomenclature to various
				organic compound
				CO 5. Explain alkanes, alkenes and alkynes

			CO 6. Interpret preparation methods for
		GTI 400	
F.Y.B.Sc.	Chemistry Practical	<u>CH 103</u>	CO I. Recognize the importance of chemical
	Couse I		safety and lab safety
			CO 2. Determine the thermochemical
			parameters and related concepts
			CO 3. Measure pH of various solutions by
			using pH meter
			CO 4. Prepare various buffer solutions
			CO 5. Analyze various elements from the
			given organic compound
			CO 6. Apply chromatographic techniques for
			separation of constituents of mixtures
FYBSc	Inorganic	- CH 201	CO 1 Define origin of quantum mechanics
1.1.0.00	Chemistry		CO 1. Define origin of quantum mechanics
<u>Sem-II</u>	Chemistry	<u>C11 201</u>	and its need
<u>Sem-II</u>	Chemistry		and its need CO 2. Describe various theories and
<u>Sem-II</u>	Chemistry		and its need CO 2. Describe various theories and principles related atomic structure
<u>Sem-II</u>	Chemistry		 and its need CO 2. Describe various theories and principles related atomic structure CO 3. Illustrate Schrodinger equation for
<u>Sem-II</u>	Chemistry		 CO 1. Define origin of quantum mechanics and its need CO 2. Describe various theories and principles related atomic structure CO 3. Illustrate Schrodinger equation for hydrogen atom
<u>Sem-II</u>	Chemistry		 CO 1. Define origin of quantum mechanics and its need CO 2. Describe various theories and principles related atomic structure CO 3. Illustrate Schrodinger equation for hydrogen atom CO 4. Discuss periodic table and periodicity
<u>Sem-II</u>	Chemistry		 CO 1. Define origin of quantum mechanics and its need CO 2. Describe various theories and principles related atomic structure CO 3. Illustrate Schrodinger equation for hydrogen atom CO 4. Discuss periodic table and periodicity of elements
<u>Sem-II</u>	Chemistry		 CO 1. Define origin of quantum mechanics and its need CO 2. Describe various theories and principles related atomic structure CO 3. Illustrate Schrodinger equation for hydrogen atom CO 4. Discuss periodic table and periodicity of elements CO 5. Explain characteristics of various
<u>Sem-II</u>	Chemistry		 CO 1. Define origin of quantum mechanics and its need CO 2. Describe various theories and principles related atomic structure CO 3. Illustrate Schrodinger equation for hydrogen atom CO 4. Discuss periodic table and periodicity of elements CO 5. Explain characteristics of various chemical bonds
<u>Sem-II</u>	Chemistry		 and its need CO 2. Describe various theories and principles related atomic structure CO 3. Illustrate Schrodinger equation for hydrogen atom CO 4. Discuss periodic table and periodicity of elements CO 5. Explain characteristics of various chemical bonds CO 6. Summarize Born-Lande equation and
<u>Sem-II</u>	Chemistry		 and its need CO 2. Describe various theories and principles related atomic structure CO 3. Illustrate Schrodinger equation for hydrogen atom CO 4. Discuss periodic table and periodicity of elements CO 5. Explain characteristics of various chemical bonds CO 6. Summarize Born-Lande equation and Born-Haber cycle
<u>Sem-II</u>	Chemistry		 CO 1. Define origin of quantum mechanics and its need CO 2. Describe various theories and principles related atomic structure CO 3. Illustrate Schrodinger equation for hydrogen atom CO 4. Discuss periodic table and periodicity of elements CO 5. Explain characteristics of various chemical bonds CO 6. Summarize Born-Lande equation and Born-Haber cycle
<u>Sem-II</u> F.Y.B.Sc.	Chemistry	<u>CH 201</u>	 CO 1. Define origin of quantum mechanics and its need CO 2. Describe various theories and principles related atomic structure CO 3. Illustrate Schrodinger equation for hydrogen atom CO 4. Discuss periodic table and periodicity of elements CO 5. Explain characteristics of various chemical bonds CO 6. Summarize Born-Lande equation and Born-Haber cycle CO 1. Define analytical chemistry and

			CO 2. Describe various calculations used in
			analytical chemistry
			CO 3. Differentiate between mass and weight
			CO 4. Explain qualitative analysis of organic
			compounds
			CO 5. Compare between paper and thin layer
			chromatography
			CO 6. Illustrate pH measurement
F.Y.B.Sc.	Chemistry	<u>CH 203</u>	CO 1. Synthesize commercially important
	Practical Couse II		inorganic compounds
			CO 2. Apply volumetric analysis for various
			inorganic compound estimation
			CO 3. Analyze commercial products
			containing inorganic substances
			CO 4. Draw polar plots of s and p orbitals
			CO 5. Use various purification techniques for
			organic compounds
			CO 6. Prepare derivatives of various organic
			compounds
		1	

Name of the	Class	Course	Course	Course outcome
department		name	code	
Department of	S.Y.B.Sc.	Physical &	<u>CH 301</u>	CO 1. Define kinetics, rate laws and rate
Chemistry	<u>Sem-III</u>	Analytical Chemistry		constants
				CO 2. Explain factors affecting rate of
				reaction
				CO 3. Apply adsorption process to real life
				problem
				CO 4. Illustrate different terms related to
				errors in quantitative analysis
				CO 5. Interpret calculations involved in
				volumetric analysis
				CO 6. Compare various titrations
		Inorganic &	CH 302	CO 1. Define the terms related to molecular
		Organic Chemistry		orbital theory
		Chemistry		CO 2. Distinguish between atomic and
				molecular orbital
				CO 3. Apply IUPAC nomenclature to
				coordination compound
				CO 4. Correlate reagent and reactions
				CO 5. Compare nucleophilic substitution
				(SN ¹ , SN ² and SN ⁱ) reactions
				CO 6. Differentiate between alcohols,
				phenols and ethers

	Chemistry Drastical III	<u>CH-303</u>	CO 1. Examine chemical kinetics by various
			experiment
			CO 2. Analyze inorganic compounds by
			quantitative and qualitative analysis
			CO 3. Separate binary mixture of organic
			compounds
			CO 4. Prepare various organic compounds
			CO 5. Determine equivalence point of
			neutralization of acetic acid and sodium
			hydroxide
			CO 6. Estimate various compounds from
			given solution and find errors in quatitative
			analysis
 S.Y.B.Sc.	Physical &	<u>CH-401</u>	CO 1. Define system, phase in system, degree
<u>Sem-IV</u>	Analytical Chemistry		of freedom, one /two component system
	Chemistry		CO 2. Explain Gibb's phase rule and its
			thermodynamic derivation
			CO 3 Dorivo distribution law and its
			thermodynamic proof
			CO 4 Apply conductometric methods of
			analysis to real problem in analytical
			laboratory
			CO 5 Illustrate Lembert Peer's law and its
			derivation
			CO 6 Predict concretion of ions using regins
	Inorgania	CH_402	CO 1. Describe isometican in accordination
	and Organic	<u>C11-402</u>	complexes
	Chemistry		CO 2 Identify inner and outer arbital
			co 2. Identity inner and outer orbital
			complexes

			CO 3. Calculate field stabilization energy and
			magnetic moment for various complexes
			CO 4. Perform inter conversion of functional
			groups
			CO 5. Relate reagent and reactions of
			carboxylic acids and their derivatives
			CO 6. Explain stereochemistry of
			cyclohexane
S.Y.B.Sc.	Practical	<u>CH-403</u>	CO 1. Determine the cell constant by using
	Chemistry IV		conductometric titration
			CO 2. Separate binary mixture of cations by
			column chromatography
			CO 3. Analyze variation of mutual solubility
			temperature with % concentration for the
			phenol-water system
			CO 4. Verify the Freundlich and Langmuir
			adsorption isotherm for adsorption of acetic
			acid on activated charcoal
			CO 5. Synthesize various coordination
			compounds
			CO 6. Determine the unknown
			concentrations of various solutions

Name of the	Class	Course	Course	Course outcome
department		name	code	
Department of	T.Y.B.Sc.	Physical	<u>CH 501</u>	CO 1. Describe the De Broglie hypothesis
Chemistry	<u>Sem-V</u>	Chemistry DSEC-I		and uncertainty principle
				CO 2. Solve Schrodinger equation for 1D, 2D
				and 3D model
				CO 3. Differentiate between Rayleigh,
				Stokes and anti-stokes lines in a Raman
				spectrum
				CO 4. Classify molecules on the basis of
				moment of Inertia
				CO 5. Analyse quantum yield and explain
				reasons for high and low quantum yield
				CO 6. Categorize various photochemical
				reactions
		Analytical	<u>CH 502</u>	CO 1. Define the terms- gravimetry, co-
		Chemistry		precipitation, post precipitation
				CO 2. Explain applications of gravimetry in
				determination of various ions
				CO 3. Classify basic radicals in groups
				CO 4. Illustrate factors affecting
				thermogravimetric analysis
				CO 5. Review various parts of
				spectrophotometer
				CO 6. Select a particular method of analysis
				of a sample

	Physical	<u>CH 503</u>	CO 1. Determine the specific refractivity's of
	Chemistry Practical I		the given liquids and their mixture
	I fuction I		CO 2. Determine the refractive index of a
			series of salt solutions
			CO 3. Estimate various ions by colorimetry
			CO 4. Analyze acid vs base
			conductometrically
			CO 5. Evaluate the molecular weight of a high
			polymer by using viscometer
			CO 6. Determine the radius of glycerol
			molecule from viscosity measurement
DSEC-II	Inorganic	<u>CH-504</u>	CO 1. Describe the electroneutrality
	Chemistry - I		principle and different types of pi bonding
			CO 2. Explain MOT of octahedral complex
			CO 3. Classify reactions of coordination
			compounds
			CO 4. Justify position of d-block elements in
			periodic table
			CO 5. Differentiate between d-block and f-
			block elements
			CO 6. Illustrate metals, semiconductors and
			Insulators on the basis of band gap
DSEC-II:	Industrial Chamistry I	<u>CH-505</u>	CO 1. Describe the importance of chemical
Cnemistry - I		industry	
			CO 2. Compare between batch and
			continuous process
			CO 3.Explain manufacturing process and
			uses of basic chemicals
			CO 4. Illustrate processes involved in sugar
			industry and fermentation

			CO 5. Review the manufacturing of soaps
			and detergents
			CO 6. Explain synthesis, structures,
			properties and applications of dyes and
			pigments
DSEC-II	Inorganic	<u>CH-506</u>	CO 1. Estimate various ions using
	Chemistry Practical - I		gravimetric analysis
			CO 2. Analyze sodium bicarbonate from
			mixture by thermal decomposition
			CO 3. Determine water of crystallization by
			thermal decomposition
			CO 4. Synthesize various inorganic
			complexes
			CO 5. Separate ions by Inorganic qualitative
			analysis
			CO 6. Analyze iron, chloride and sulphate
			from pharmaceutical raw material by limit
			test
DSEC-III:	Organic	<u>CH-507</u>	CO 1. Define and classify polynuclear and
	Chemistry - I		heteronuclear aromatic hydrocarbons
			CO 2. Describe meaning of active methylene
			group, its preparation and applications
			CO 3. Explain various reactions and
			mechanisms
			CO 4. Illustrate different types of
			intermediates in rearrangement reaction
			CO 5. Differentiate between 1,1 and 1,2-
			elimination
			CO 6. Interpret mechanisms of E^1 , E^2 , E^{1cB}
			reactions

DSEC-III	Chemistry of	<u>CH-508</u>	CO 1. Describe cell and differentiate between
	Biomolecules		a bacterial cell, plant cell, and animal cell
			CO 2. Explain biological composition and
			organization of cell membrane
			CO 3. Discuss carbohydrates and their
			biochemical significance in living organisms
			CO 4. Illustrate the types of lipids, structure of
			lipids and properties of lipids
			CO 5. Recall amino acids and proteins
			CO 6. Infer the importance of enzymes and
			hormones
DSEC-III	Organic	<u>CH-509</u>	CO 1. Separate, purify and analyse binary
	Chemistry Practical-I		mixtures
	1 Tactical-1		CO 2. Describe the techniques involved in
			drying and recrystallization method
			CO 3. Synthesize various organic compounds
			through greener approach
			CO 4. Predict alternative solvent media and
			energy sources for chemical processes
			CO 5. Expert in various techniques of
			preparation and analysis of organic
			substances
			CO 6. Plan to use the purification technique
			for chemical reaction

	Introduction to Medicinal Chemistry	<u>CH-510</u> (<u>A</u>)	 CO 1. Describe the basics of drug chemistry CO 2. Explain bio-physicochemical properties in drug action and design CO 3. Illustrate drugs for infectious diseases CO 4. Recognize drugs for non-infectious diseases CO 5. Review biological activity parameters and importance of stereochemistry of drugs and receptors CO 6. Predict mechanism of action of drugs belonging to the classes of infectious and non-infectious diseases
	Environment al Chemistry	<u>CH-511</u> (<u>A</u>)	 CO 1. Describe importance and conservation of environment CO 2. Explain biogeochemical cycles of C, N, P, S and O CO 3. Compare organic and inorganic pollutants CO 4. Interpret water quality parameters CO 5. Review water quality parameters and standards CO 6. Plan waste water treatment
T.Y.B.Sc. Semester- VI	DSEC-IV Physical Chemistry-II	<u>CH-601</u>	 CO 1. Describe the components of an electrochemical cell 2. Determine the e.m.f. of an electrochemical cell 3. Calculate the mass of a unit cell 4. Explain the sign convention for electrode potentials 5. Estimate the equilibrium constant of a cell reaction

		1	C Due d'at amontal atmosteries of No Classics
			o. Fredici crystal structure of NaCl using
			Bragg's method
DSEC-IV	Physical	<u>CH-602</u>	CO 1. Describe the principles and applications of
	Chemistry- III		colligative properties of dilute solutions
			CO 2. Understand the relation between Vant
			Hoff's factor and degree of dissociation of
			electrolyte
			CO 3. Calculate the molecular weight of
			nonelectrolytes using colligative properties
			CO 4. Evaluate the factors affecting the rate of
			reactions in solids
			CO 5. Compare the electronic structure of solids,
			conductors and insulators
			CO 6. Classify polymers in various types
DSEC-IV:	Physical	<u>CH-603</u>	CO 1. Determine the pKa value of given
	Chemistry Practical-II		monobasic weak acid by potentiometric titration
			CO 2. Calculate the formal redox potential of
			Fe ⁺ /Fe ³⁺ system potentiometrically
			CO 3. Estimate the dissociation constant of oxalic
			acid by pH-metric titration with strong base
			CO 4. Evaluate pKa of given weak acid by pH
			metry titration
			CO 5. Determine the molecular weight of solute
			by depression in freezing point method
			CO 6. Estimate the molecular weight of agiven
			polymer by turbidometry
DSEC-V	Inorganic	<u>CH-604</u>	CO 1. Define the organometallic chemistrty
	Chemistry -		CO 2. Understand M-C bonding in binary
	11		metal carbonyls
			CO 3. Differentiate homogeneous and
			heterogeneous catalysis
			CO 4. Illustrate the cycles of homogeneous
			catalysts like Wilkinson's catalyst
			catalysts into winthison s catalyst,

			hydroformulation reaction, Monsanto acetic
			acid synthesis, Heck reaction
			CO 5. Categorize various heterogeneous
			catalysts
			5. Explain catalytic reaction mechanism
			6. Elucidate the biological role of inorganic
			ions and compounds
DSEC-V	Inorganic	<u>CH-605</u>	CO 1. Describe the concept of acid-base and
	Chemistry - III		their theories
			CO 2. Compare the strength of different acids
			and bases
			CO 3. Identify the C.N. of an ionic solid
			CO 4. Solve problems based on Born-Haber
			cycle
			CO 5. Classify zeolites on the basis of
			building units
			CO 6. Plan the synthesis of various
			nanoparticles
DODON	- .•.		
DSEC-V: Inorganic Chemistry	<u>CH-606</u>	CO I. Estimate ions by using volumetric	
	Practical-II		analysis
			CO 2. Determination of elements (e.g. Na, K)
			by flame photometry
			CO 3. Purity water using cation/anion
			exchange resin
			CO 4. Synthesize various nanoparticles
			CO 5. Verify periodic trends using solubility
			of alkaline earth metal
			CO 6. Analyze degradation of H_2O_2 using Fe
			catalyst

DSEC- VI:	Organic Chemistry- II	CH-607	 CO 1.Define the various regions of electromagnetic spectrum CO 2.Understand the principles of various spectroscopy like UV-Visible, IR and NMR CO 3.Calculate λmax value for various compounds CO 4.Interpret IR frequencies of various molecules CO 5. Estimate structure of organic compounds by using NMR spectroscopy CO 6. Predict the structure of organic compounds on the basis of spectral data such
			as λmax , IR frequencies and chemical shift
DSEC- VI:	Organic Chemistry- III	CH-608	 CO 1. Describe the terms used in retrosynthesis like disconnection, synthons, synthetic equivalence, FGI, TM CO 2.Apply retrosynthetic approach to various target molecules CO 3.Explain chemistry of reactive intermediates CO 4. Discuss various commonly used chemical reactions and rearrangements CO 5.Illustrate various oxidizing and reducing reagents CO 6.Predict synthesis of natural products such as terpenoids and alkaloids
DSEC-VI	Organic Chemistry Practical-II	CH-609	CO 1.Explain 'fingerprint region' of an infrared spectrum CO 2.Identify the functional group or groups present in a compound CO 3.Calculate coupling constants from 1H NMR spectra CO 4.Determine molecular weight of given tribasic acid

			CO 5.Apply the principles of extraction
			CO 6.Separate organic compounds by using
			column chromatography
SEC-III	Chemistry	CH-610	CO 1.Describe the different components and
	of Soil and Agrochemic	(A)	properties of soil
	als		CO 2. Classify soil on the basis of pH
			CO 3. Identify the problematic soil and
			recommended method for their reclamation
			CO 4. Predict the plant nutrients and related
			functions
			CO 5. Relate the role of various fertilizers
			and manures required for plant growth
			CO 6.Apply various methods for soil analysis
SEC-IV	Analytical	CH-	CO 1. Describe the principle and application
	Chemistry-	611(A)	of solvent extraction
	11		CO 2. Explain instrumental methods of
			Chromatographic Analysis
			CO 3. Summarize high performance liquid
			chromatography
			co 4. Illustrate basics of gas
			CO 5 Surrey components of Atomic
			Absorption Spectroscopy
			CO 6 Apply Atomic Absorption
			Spectroscopy to determine trace elements.